3.71 \(\int \frac{1}{\sin ^{-1}(a x)^4} \, dx\)

Optimal. Leaf size=78 \[ \frac{\sqrt{1-a^2 x^2}}{6 a \sin ^{-1}(a x)}-\frac{\sqrt{1-a^2 x^2}}{3 a \sin ^{-1}(a x)^3}+\frac{\text{Si}\left (\sin ^{-1}(a x)\right )}{6 a}+\frac{x}{6 \sin ^{-1}(a x)^2} \]

[Out]

-Sqrt[1 - a^2*x^2]/(3*a*ArcSin[a*x]^3) + x/(6*ArcSin[a*x]^2) + Sqrt[1 - a^2*x^2]/(6*a*ArcSin[a*x]) + SinIntegr
al[ArcSin[a*x]]/(6*a)

________________________________________________________________________________________

Rubi [A]  time = 0.152712, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 6, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.667, Rules used = {4621, 4719, 4723, 3299} \[ \frac{\sqrt{1-a^2 x^2}}{6 a \sin ^{-1}(a x)}-\frac{\sqrt{1-a^2 x^2}}{3 a \sin ^{-1}(a x)^3}+\frac{\text{Si}\left (\sin ^{-1}(a x)\right )}{6 a}+\frac{x}{6 \sin ^{-1}(a x)^2} \]

Antiderivative was successfully verified.

[In]

Int[ArcSin[a*x]^(-4),x]

[Out]

-Sqrt[1 - a^2*x^2]/(3*a*ArcSin[a*x]^3) + x/(6*ArcSin[a*x]^2) + Sqrt[1 - a^2*x^2]/(6*a*ArcSin[a*x]) + SinIntegr
al[ArcSin[a*x]]/(6*a)

Rule 4621

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^(n + 1))
/(b*c*(n + 1)), x] + Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcSin[c*x])^(n + 1))/Sqrt[1 - c^2*x^2], x], x] /; Free
Q[{a, b, c}, x] && LtQ[n, -1]

Rule 4719

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
((f*x)^m*(a + b*ArcSin[c*x])^(n + 1))/(b*c*Sqrt[d]*(n + 1)), x] - Dist[(f*m)/(b*c*Sqrt[d]*(n + 1)), Int[(f*x)^
(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n,
-1] && GtQ[d, 0]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^(
m + 1), Subst[Int[(a + b*x)^n*Sin[x]^m*Cos[x]^(2*p + 1), x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n},
x] && EqQ[c^2*d + e, 0] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sin ^{-1}(a x)^4} \, dx &=-\frac{\sqrt{1-a^2 x^2}}{3 a \sin ^{-1}(a x)^3}-\frac{1}{3} a \int \frac{x}{\sqrt{1-a^2 x^2} \sin ^{-1}(a x)^3} \, dx\\ &=-\frac{\sqrt{1-a^2 x^2}}{3 a \sin ^{-1}(a x)^3}+\frac{x}{6 \sin ^{-1}(a x)^2}-\frac{1}{6} \int \frac{1}{\sin ^{-1}(a x)^2} \, dx\\ &=-\frac{\sqrt{1-a^2 x^2}}{3 a \sin ^{-1}(a x)^3}+\frac{x}{6 \sin ^{-1}(a x)^2}+\frac{\sqrt{1-a^2 x^2}}{6 a \sin ^{-1}(a x)}+\frac{1}{6} a \int \frac{x}{\sqrt{1-a^2 x^2} \sin ^{-1}(a x)} \, dx\\ &=-\frac{\sqrt{1-a^2 x^2}}{3 a \sin ^{-1}(a x)^3}+\frac{x}{6 \sin ^{-1}(a x)^2}+\frac{\sqrt{1-a^2 x^2}}{6 a \sin ^{-1}(a x)}+\frac{\operatorname{Subst}\left (\int \frac{\sin (x)}{x} \, dx,x,\sin ^{-1}(a x)\right )}{6 a}\\ &=-\frac{\sqrt{1-a^2 x^2}}{3 a \sin ^{-1}(a x)^3}+\frac{x}{6 \sin ^{-1}(a x)^2}+\frac{\sqrt{1-a^2 x^2}}{6 a \sin ^{-1}(a x)}+\frac{\text{Si}\left (\sin ^{-1}(a x)\right )}{6 a}\\ \end{align*}

Mathematica [A]  time = 0.0621412, size = 70, normalized size = 0.9 \[ \frac{-2 \sqrt{1-a^2 x^2}+\sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2+\sin ^{-1}(a x)^3 \text{Si}\left (\sin ^{-1}(a x)\right )+a x \sin ^{-1}(a x)}{6 a \sin ^{-1}(a x)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSin[a*x]^(-4),x]

[Out]

(-2*Sqrt[1 - a^2*x^2] + a*x*ArcSin[a*x] + Sqrt[1 - a^2*x^2]*ArcSin[a*x]^2 + ArcSin[a*x]^3*SinIntegral[ArcSin[a
*x]])/(6*a*ArcSin[a*x]^3)

________________________________________________________________________________________

Maple [A]  time = 0.023, size = 63, normalized size = 0.8 \begin{align*}{\frac{1}{a} \left ( -{\frac{1}{3\, \left ( \arcsin \left ( ax \right ) \right ) ^{3}}\sqrt{-{a}^{2}{x}^{2}+1}}+{\frac{ax}{6\, \left ( \arcsin \left ( ax \right ) \right ) ^{2}}}+{\frac{1}{6\,\arcsin \left ( ax \right ) }\sqrt{-{a}^{2}{x}^{2}+1}}+{\frac{{\it Si} \left ( \arcsin \left ( ax \right ) \right ) }{6}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/arcsin(a*x)^4,x)

[Out]

1/a*(-1/3/arcsin(a*x)^3*(-a^2*x^2+1)^(1/2)+1/6*a*x/arcsin(a*x)^2+1/6/arcsin(a*x)*(-a^2*x^2+1)^(1/2)+1/6*Si(arc
sin(a*x)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{a^{2} \arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right )^{3} \int \frac{\sqrt{a x + 1} \sqrt{-a x + 1} x}{{\left (a^{2} x^{2} - 1\right )} \arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right )}\,{d x} - a x \arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right ) - \sqrt{a x + 1} \sqrt{-a x + 1}{\left (\arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right )^{2} - 2\right )}}{6 \, a \arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arcsin(a*x)^4,x, algorithm="maxima")

[Out]

-1/6*(6*a^2*arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1))^3*integrate(1/6*sqrt(a*x + 1)*sqrt(-a*x + 1)*x/((a^2*x^
2 - 1)*arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1))), x) - a*x*arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1)) - sqrt
(a*x + 1)*sqrt(-a*x + 1)*(arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1))^2 - 2))/(a*arctan2(a*x, sqrt(a*x + 1)*sqr
t(-a*x + 1))^3)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\arcsin \left (a x\right )^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arcsin(a*x)^4,x, algorithm="fricas")

[Out]

integral(arcsin(a*x)^(-4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\operatorname{asin}^{4}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/asin(a*x)**4,x)

[Out]

Integral(asin(a*x)**(-4), x)

________________________________________________________________________________________

Giac [A]  time = 1.2452, size = 89, normalized size = 1.14 \begin{align*} \frac{\operatorname{Si}\left (\arcsin \left (a x\right )\right )}{6 \, a} + \frac{x}{6 \, \arcsin \left (a x\right )^{2}} + \frac{\sqrt{-a^{2} x^{2} + 1}}{6 \, a \arcsin \left (a x\right )} - \frac{\sqrt{-a^{2} x^{2} + 1}}{3 \, a \arcsin \left (a x\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arcsin(a*x)^4,x, algorithm="giac")

[Out]

1/6*sin_integral(arcsin(a*x))/a + 1/6*x/arcsin(a*x)^2 + 1/6*sqrt(-a^2*x^2 + 1)/(a*arcsin(a*x)) - 1/3*sqrt(-a^2
*x^2 + 1)/(a*arcsin(a*x)^3)